Biochem biophys res commun

Biochem biophys res commun

We use cookies to make interactions with our website easy and meaningful, to better understand the use of our services, and to tailor advertising. For further information, including about cookie settings, please read our Cookie Policy . By continuing to use this site, you consent to the use of cookies.

We use cookies to offer you a better experience, personalize content, tailor advertising, provide social media features, and better understand the use of our services.

To learn more or modify/prevent the use of cookies, see our Cookie Policy and Privacy Policy.

ResearchGate has not been able to resolve any citations for this publication.

  • Cyclic AMP-dependent proteolysis of GATA-6(Delta50) was characterized using inhibitors for intracellular signaling pathways. Among these kinase inhibitors, only H-89 and K252a inhibited the proteolysis induced by dbcAMP, a membrane permeable cAMP analogue, others such as PD98059, SB203580, calphostine C, PP1, and KN-93 did not do so. These results suggest that A-kinase, but not C-kinase, MEK, P38 MAP-kinases or Src kinase, could participate in the observed phenomenon. We further demonstrated that an inhibitor for ubiquitin isopeptidase (Delta12-PGJ2) inhibited the degradation of GATA-6(Delta50) in the presence of dbcAMP, suggesting that the cAMP-dependent proteolysis could be mediated through the ubiquitin-proteasome pathway, although proteasome activity did not change significantly during dbcAMP treatment. The full-length GATA-6 was also responsive to the induced degradation. Furthermore, mutation of a potential phosphorylation site (Ser-290—>Ala) for A- and C-kinases, and deletion of the PEST sequence of GATA-6 did not abolish the degradation. All these results suggest that cellular factor(s) may play a crucial role in mediating the activation of the cAMP-dependent process.


Добавить комментарий