Гормон с высокой прессорной активностью

Гормон с высокой прессорной активностью

Стероидные и тиреоидные гормоны, а также витамин D влияют на клетки-мишени путём взаимодействия с внутриклеточными рецепторами. Комплекс гормона с рецептором связывается со специфической последовательностью выше точки начала транскрипции и запускает транскрипцию. Рецепторный белок имеет два важных домена: один связывает гормон, а другой – ДНК. Получение этой информации и знание структуры генов, кодирующих рецепторы, способствовали пониманию причин нескольких заболеваний, для которых характерно отсутствие реакции на указанные гормоны.

Резистентность к андрогенам – это отсутствие чувствительности к мужскому половому гормону тестостерону и его метаболиту с выраженным андрогенным действием – 5 — дигидротестостерону (DНТ). Причиной этого заболевания могут быть: полная или частичная делеция гена, кодирующего рецептор андрогенов; нарушения сплайсинга; необычное расположение кодонов терминации; мутация оснований, приводящая к замене аминокислот. В случае резистентности к андрогенам замена аминокислот чаще происходит в стероидсвязывающем домене рецептора.

Тиреоидная резистентность также может быть результатом мутаций гена, кодирующего рецептор тиреоидного гормона. Несмотря на высокий уровень тиреоидного гормона в плазме крови, у таких боьных наблюдается задержка роста и изменения костной системы. Ткани организма как бы не видят гормон. Два различных тиреоидных рецептора, и , кодируются двумя различными генами, и . В случае генерализованой резистентности к тиреоидным гормонам большинство мутаций, как было показано, происходит в чётко ограниченном участке -гена.

Резистентность к глюкокортикоидам тоже частично можно объяснить мутациями соответствующего рецептора, что очень важно для терапии, поскольку глюкокортикоиды (например, преднизолон) широко применяются как противовоспалительные средства при поражениях соединительной ткани и в качестве иммунодепрессантов при аутоиммунных заболеваниях. Таким образом, лечение глюкокортикоидами больных, резистентных к ним, не будет давать результата. При некоторых видах резистентности к глюкокортикоидам обнаружены точечные мутации, приводящие к замене отдельных аминокислот. Это появляется снижением сродства рецептора к гормону.

Дефекты рецепторов и резистентность к гормонам.

Ошибки трансляции могут стать причинойрезистентности к гормонам. Резистентность – это неспособность клеток-мишеней реагировать на определённые гормоны (андрогены, глюкокортикоиды, тиреоидные гормоны) и витамин D, действующие через внутриклеточные рецепторы.

У больных, резистентных к андрогенам, эти рецепторы могут отсутствовать; иметь существенно изменённую структуру из-за делеции участков С-конца полипептидной цепи или иметь лишь одну аминокислотную замену в результате точечной мутации, то есть мутации лишь одной пары оснований в молекуле ДНК. Всё это является следствием мутаций гена рецептора андрогенов, поэтому заболевание наследуется. В результате организм больного не отвечает на собственные андрогены, что приводит к бесплодию.

Мутации различных участков в гене липопротеина низкой плотности (ЛПНП) могут вызвать нарушение метаболизма холестерола и привести к гиперхолестеринемии и прждевременному поражению сосудов. Мутации приводят к уменьшению числа рецепторов или полному их отсутствию; снижению скорости транспорта новосинтезированного рецептора из ЭР в аппарат Гольджи; неспособности рецептора связывать ЛПНП; нарушению рециркуляции ЛПНП рецепторов. Заболевание обычно передаётся по наследству.

Известны нарушения трансляции белка коллагена, приводящие к потере структурной жесткости этого важнейшего белка опорных тканей организма.

Репарация связана с процессом распознания ошибок (proofreading). Способность ДНК-полимеразы к распознанию ошибок впервые была обнаружена у Е. coli. Предполагается, что фермент ДНК-полимераза I имеет 3 à 5 – экзонуклеазную активность, с помощью которой проверяет новосинтезированную последовательность оснований, вырезает неправильно спаренные основания и заменяет их на комплементарные.

Восстановление пиримидиновых димеров.

При облучении ДНК ультрофиолетовыми (УФ) лучами между двумя соседними пиримидиновыми остатками могут возникнуть ковалентные связи с образованием пиримидинового димера. Вызванное формированием димеров нарушение структуры ДНК выявляется группой белков, продуцируемых генами uvrАВС. Группа представляет собой тетрамер из 2 белков РuvrА и 2 белков РuvrВ. Экзонуклеазный фермент РuvrС разрезает цепи в двух местах: на расстоянии 4 нуклеотидов от димера на 3-конце и на расстоянии 8 нуклеотидов на 5-конце. После расплетания с помощью геликазы РuvrD вырезанный участок ДНК (включающий 12 оснований) удаляется. ДНК-полимераза I заполняет образовавшийся промежуток, используя для репарации обнажённый 3-конец в качестве праймера, а интактную комплементарную цепь – в качестве матрицы. Наконец, ДНК-лигаза сшивает 3-конец новосинтезированной ДНК с исходной цепью ДНК.

Примечание. Фермент Е. coli ДНК-фотолиаза связывается с изменённым участком ДНК, содержащим димер, активируется светом и расщепляет димер.

Репарация путём вырезания фрагмента используется клеткой и для удаления поперечных сшивок, возникающих под действием противоопухолевых препаратов – таких, как цисплатина, митомицин С и азотистые аналоги иприта.

Восстановление дезаминированного цитозина.

Цитозин в составе ДНК может подвергаться спонтанному дезаминированию с образованием урацила. Поскольку урацил комплементарен аденину (U-А), это потенциально мутагенное изменение. Присутствие урацила в молекуле ДНК распознаётся урацил-ДНК-гликозилазой, которая гидролизирует связь между урацилом и дезоксирибозой. Образовавшийся после удаления пиримидина промежуток называют АП-сайтом (т.е. апуринизированный участок – без цитозина или Тимина). Данный промежуток распознаёт фермент АП-эндонуклеаза, разрезающая остов молекулы ДНК рядом с удалённым основанием. ДНК-полимераза I вырезает фосфорилированную дезоксирибозу и вставляет цитозин, комплементарный остатку гуанина интактной цепи. ДНК-лигаза восстанавливает целостность цепи ДНК.

Заболевания, связанные с нарушением репарации ДНК.

К этой группе заболеваний относятся наследственная ретинобластома, анемия Фанкони и пигментная ксеродерма.

Лучше всего изучена пигментная ксеродерма. Это редкое заболевание, наследуемое по аутосомно-рецессивному типу. У больных повышена чувствительность к УФ-лучам и солнечному свету. Вскоре после рождения у них развиваются поражения кожи (дерма атрофируется, происходят рубцовые изменения век, изъявление роговицы; появляются пигментация и изъявление кожи), что часто приводит к развитию рака кожи.

Причиной этого заболевания является дефект фермента эндонуклеазы, которая в норме вырезает ДНК в месте образования пиримидиновых димеров, появляющихся, как известно, в результате УФ-облучения. Было показано, что фибробласты из кожи больных пигментной ксеродермой содержат дефектный фермент. Мутации по меньшей мере в 1 из 9 генов могут привести к развитию заболевания. Хотя частота заболевания низка, носители хотя бы одного из мутированных генов составляют примерно 1% от всего населения.

Не нашли то, что искали? Воспользуйтесь поиском:



Источник: studopedia.ru


Добавить комментарий